Hypothesis Tests for Multivariate Linear Models Using the car Package
نویسنده
چکیده
The multivariate linear model is Y (n×m) = X (n×p) B (p×m) + E (n×m) The multivariate linear model can be fit with the lm function in R, where the left-hand side of the model comprises a matrix of response variables, and the right-hand side is specified exactly as for a univariate linear model (i.e., with a single response variable). This paper explains how to use the Anova and linearHypothesis functions in the car package to perform convenient hypothesis tests for parameters in multivariate linear models, including models for repeated-measures data.
منابع مشابه
Visualizing hypothesis tests in multivariate linear models: the heplots package for R
Abstract Hypothesis-error (or “HE”) plots, introduced by Friendly (J Stat Softw 17(6):1–42, 2006a; J Comput Graph Stat 16:421–444, 2006b), permit the visualization of hypothesis tests in multivariate linear models by representing hypothesis and error matrices of sums of squares and cross-products as ellipses. This paper describes the implementation of these methods in the heplots package for R,...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملThe welchADF Package for Robust Hypothesis Testing in Unbalanced Multivariate Mixed Models with Heteroscedastic and Non-normal Data
A new R package is presented for dealing with non-normality and variance heterogeneity of sample data when conducting hypothesis tests of main effects and interactions in mixed models. The proposal departs from an existing SAS program which implements Johansen’s general formulation of Welch-James’s statistic with approximate degrees of freedom, which makes it suitable for testing any linear hyp...
متن کاملInference with Linear Equality and Inequality Constraints Using R: The Package ic.infer
In linear models and multivariate normal situations, prior information in linear inequality form may be encountered, or linear inequality hypotheses may be subjected to statistical tests. R package ic.infer has been developed to support inequality-constrained estimation and testing for such situations. This article gives an overview of the principles underlying inequality-constrained inference ...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کامل